
Dispersion and Group Velocity 
 

 
In the simple lossless media we usually address in a basic course on electromagnetic 
theory, propagation constants are indeed constants. For example, in a dielectric medium 

(no magnetic properties) k
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vacuum and n is the index of refraction of the dielectric. Waves propagating in the  
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vacuum since . However, in a medium with dispersion, n ≥ 1 ( )k k= ω  or propagation 
properties depend on frequency. This property is called dispersion, because signals 
become dispersed. That is, since any signal carrying information must consist of more 
than one frequency, propagation that depends on frequency will distort the signal. 
 
There are two simple examples of such frequency dependent propagation. The first is an 
ionized gas (plasma) such as is found in the earth’s ionosphere. Here 
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frequency. When k is real, waves propagate and when k is imaginary, they do not. Thus, 
for low frequencies, waves cannot propagate. This effect is readily seen in commercial 
radio. At AM frequencies (around 1MHz), signals reflect off of the ionosphere. This 
makes it possible to communicate around the curvature of the earth much further than at 
FM frequencies (around 100MHz) where no reflection occurs. Only line of sight 
communication is possible at FM frequencies. Thus, the plasma frequency must be 
somewhere between the AM and FM bands. It varies a great deal between day and night, 
but it is indeed generally in this range. A typical value is 30MHz. A picture from 
Chaisson and McMillan’s book Astronomy Today shows some radio wave paths for 
satellite communication.  



 
A second example of dispersive propagation is a standard parallel plate waveguide. Here 
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integer. Again, we have assumed that the insulator between the plates is not magnetic. 
For very low frequencies, again there is no propagation. This effect is used in microwave 
ovens where small holes are cut into the cavity wall on the door of the oven so we can see 
what we are cooking without the microwave energy leaking out of the oven. Clearly high 
frequencies (like for visible light) still propagate through the holes since we can see 
through them. The wavelengths at microwave oven frequencies (f=2.45GHz) are about 
10cm so they are too large to fit in the holes. Actually, the holes must have a diameter of 
about a half wavelength for the waves to propagate. There is a second example of this 
cutoff effect that also involves AM and FM frequencies. If you listen to an FM station as 
you drive through a tunnel, you can usually detect the signal and hear the program 
throughout the tunnel, if at a somewhat reduced level. FM wavelengths are about 3m so 
they can fit in the tunnel. AM wavelengths, on the other hand, are about 300m so they do 
not fit in the tunnel and the waves cannot propagate. Even in a relatively short tunnel, 
AM signals will rapidly disappear. Try this experiment sometime.  
 
The dependence of propagation on frequency produces some confusing results that 
require us to develop a more general picture of this process. The clearest problem occurs 

in the phase velocity u
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 for ω ω≥ p which is the condition required for 

propagation. Thus, the phase velocity exceeds the speed of light! We all know that it is 
not possible for EM waves to propagate faster than c so something must be wrong with 
this picture. The key to understanding this problem is that this velocity is the phase 
velocity. Such a velocity only characterizes the propagation of waves that exist for all 
time (steady-state). We are interested in waves that turn on and off and, thus, carry 



information. In communication systems there is usually some kind of a carrier frequency 
(as in AM and FM) with the signal of interest modulated on top of it. Signals come in 
clumps rather than continuously. Thus, we are really interested in how groups of signals 
propagate, not generally how single frequencies propagate. A more general velocity, 

called the group velocity, has been defined as u
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velocity does not exceed c. For plasmas or waveguides, we see that  
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For lossless, dispersive media of this type, we see that  
uu cg = 2  

which is a general result whose proof is addressed in advanced electromagnetic theory 
courses.  
 
One of the most straight forward methods for investigating the form and meaning of the 
group velocity involves the use of the Fourier transform of a particular pulse shape – a 
Gaussian. Gaussian pulses have very useful mathematical properties and, more important 
to our purposes, they also nicely approximate pulses actually observed in practice. To 
obtain this transform, consider the following integral: 
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Then, if we assume an initial pulse at z = 0 of the form (this is a Gaussian pulse with a 
carrier frequency ωo ): 
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For example, let  and . Then this pulse has the form ω π πo of= =2 4 1 60 σ = 106



 
For a much higher frequency , the envelope is more evident ω π πo of= =2 1 70

 



The Fourier transform of this pulse will be: 
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Propagation away from z = 0 is accomplished by adding the spatial phase shift term to 
the integrand of the inverse transform: 
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To obtain this integral, we approximate the relationship between k and ω  using the first 
three terms of the Taylor series expansion around ωo  
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Grouping similar terms allows us to recognize the general form of the integral 
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Note that the last term involving  can be combined with k ' ' ( )F oω ω− and the term 
[− k z t' ( ) ]+ω  is a retarded time. Thus, the final form of the integral for  is (f z t, )
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which becomes, finally 
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We can therefore see that the Gaussian pulse propagates at the group velocity ( )

1
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z
since the amplitude decreases as z increases. Since most physical pulses look something 
like a Gaussian, this result is reasonably general. In fact, by invoking the concepts of
geometrical optics, the results can be shown to be quite general. Note also that, for non-
dispersive media (like simple dielectrics), k ' '

and spreads out as  increases. All the effects of dispersion are evident in this expression 

 

= 0 and k '  and pulses propagate 

undistorted at the phase velocity. 
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